
 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

EOS Dil Gases    W. Udo Schröder 

 

1 

V.2. Dilute Gases 

Dynamical systems of many particles are difficult to treat in 

any detail. Substantial efforts are expended by the modern physi-

cal chemistry community to develop practical approaches to un-

derstand and predict strongly coupled, multi-dimensional quantal 

systems, for example, in the framework of molecular-dynamics 

and other transport models. A later section will discuss and illus-

trate basic foundations of such models. These models explain in 

heuristic fashion, how an asymptotic equilibrium state of such sys-

tems is reached and what its detailed properties are.  

However, historically, a simplified view of multi-particle sys-

tems, notably of gases and vapors, proved extremely fruitful in 

developing a sufficiently quantitative accounting of the underlying 

physics. This view postulated the existence of an equilibrium state 

of macroscopic samples of diluted gases, in which individual parti-

cles move randomly in a given containment, with little or no mu-

tual interactions. The internal state of such “ideal gas” samples 

could be tested by summary interactions of the gas with the envi-

ronment beyond the container. It turns out that, at room temper-

atures and pressures of up to 10 Pa (  1 atm), many gases with 

simple particle structure are close to ideal. This category includes 

the noble gases, as well as most gases in the atmosphere, such as 

hydrogen, oxygen, and nitrogen. 

 

 

 Molecular Chaos 

 

To summarize briefly the effects of multiple particle interac-

tions, it suffices to note that it only takes a few successive colli-

sions with other particles to deflect a given particle from its initial 

flight path into random directions. The hard sphere scattering 

model predicts a random angular distribution already for single 
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scattering events. In addition, in a collision between equal masses, 

the collision partners share on average the kinetic energy of rela-

tive motion. Energy and momentum are transferred on average 

from the faster to the slower particle. In such multi-scattering pro-

cesses, the motion of the gas particles becomes completely cha-

otic, with an isotropic angular distribution of the velocity 

 x y zu u ,u ,u= and a chaotic velocity spectrum ( )f u .  

These rather general observations are sufficient to constrain the 

chaotic velocity and energy spectra of gas particles to certain clas-

ses of functional probability distributions ( )f u . Since ( )f u is a sto-

chastic function (a probability distribution), it must be nor-

malized, or at least normalizable: 

 

          
( ) ( ) ( )3 2 1x y z x y zd u f u du du du f u ,u ,u duu d f u, , = =  =      (1) 

 

The integral limits in Equ.(1) include all (allowed) velocities. Rig-

orously, although the various functions f in Equ. (1) represent the 

same physical relation, they are different mathematical relations. 

Given such a probability function, one can calculate the mean (av-

erage) velocity u  as, 

 

                                   ( )3u d u u f u=                                (2) 

  

and the average speed as 

 

                               ( )3u u d u u f u= =                            (3) 

 

The variance of the velocity distribution is defined as the second 

(central) moment: 
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                         ( )
222 2 3

u u u d u u u f u = − =  −                  (4) 

 

One can now use symmetry arguments to constrain the possible 

choices for function ( )f u . 

 

Because of the isotropy of the velocity distribution, ( )f u cannot 

actually depend on the direction of the velocity vector. It 

must be an even function in velocity space: 

 

      ( ) ( )f u f u= −                                  (5) 

 

It can therefore depend only on the absolute value (the speed) or 

the square of the velocity, i.e., this distribution has the form In 

particular, one has to require that 

 

                                    ( ) ( ) ( )2f u f u f u= =                           (6)                      

 

Specifically, one has to require that there are no differences in the 

probabilities for the three velocity components ux, uy and uz, 

 

                                  
2 2 2
x y zf (u ) f (u ) f (u )= =                    (7) 

 

and, since 
2 2 2 2

x y zu u u u= + + , 

 

                      
2 2 2 2 2 2 2

x y z x y zf (u ) f (u u u ) f (u ) f (u ) f (u )= + + =                (8) 

 

The relation (8) indicates a peculiar dependence of the probabil-

ity density f on its variables. The functional value of a sum of var-

iables equals the product of the functional values for each term in 

the sum. In fact, there is only one mathematical function that 
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shows this behavior: The probability function has to be an expo-

nential in u2,  

 

   

22 auf (u ) C e −
=                     (9) 

 

where a and C are constants yet to be determined.  

 

The constant a has to be a positive number, a negative num-

ber would make the probability become indefinitely large for large 

velocities, which makes physically no sense. As a probability (or 

probability density), ( )2f u  must be normalizable,  

 

                               
221 audu f(u ) C due

+ +

−

− −

= =              (10) 

 

 This condition determines the normalization constant to 

C=(a/). The constant a can also be determined, at least it can 

be related to the mean kinetic energy for each degree of freedom: 

 

                              
22 2

2 2
xau

x x x x

m m a
u du u e



+

−

−

= =              (11) 

 

Because of the equality of the average speeds in all directions 

(Equ.(7)), one obtains similar expressions for  

 

                                   
1

3
y z x   = = =                        (12) 
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The integrand in (11) is an even function of ux and, hence, the 

value of the integral is twice that taken along only the positive ux-

axis: 

 

                             
2 22 2

0

1
2

2
x xau au

x x x xdu u e du u e
a a


+ +

− −

−

=  =           (13) 

 

Combining Equs. (10) and (11), one obtains 

 

                
1

2 2 4
x

m a m

a a a





=  =                   (14) 

This determines 
4 x

m
a


=  and  

 

                
2 2

4 4
xau

x x

x x

m m
f(u ) C e exp u

  

−
  

=  =  − 
  

                 (15) 

 

This is a remarkable result of the above symmetry considera-

tions. The velocity distribution (in x) is a Gaussian with a variance 

of  

       
2 2
xu x m =                                (16) 

Similarly, one obtains Gaussians for the  uy and uz velocity 

distributions with identical variances. Because of Equ. (12), 

 

                              2 2 2 2

3xu uy uz
m

   = = =                            (17) 

 

Phenomenologically, one associates the average energy 

of gas particles (or of constituents of other media) with an 

equilibrium temperature or non-equilibrium temperature-

like parameter T. The higher the average kinetic energy of the 
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particles, the higher the temperature. Specifically, one measures 

for each degree of freedom the same mean energy content, 

 

                               
1

2
x y z Bk T  = = =                        (18) 

Here kB is the Boltzmann constant, 

 

                          kB = R/L = 1.381·10-23J/K                  (19) 

 

 This then yields an overall velocity distribution of the gas parti-

cles, 

 

                 
2

2

2 2
xau x

x

B B

m mu
f(u ) C e exp

k T k T

−  
=  =  − 

 
                  (20) 

 

for one velocity component. Then, using Equ. (4), the probability 

distribution for the total velocity is obtained from Equ. (20) by 

multiplying three equal terms of the same form, such that 

 

 

 


   
= =  −  

   

3
2

2

2

2 2B B

m m
f(u) f ( ) p

u

k T
u ex

T k
  (21) 

 

 

This is the famous Maxwell-Boltzmann velocity distribution, 

mathematically a Gaussian function. It has the essential analytical 

structure of the probability P(u) to find the value of any stochastic 

single-particle variable u realized in a statistical (chaotic) system 

characterized by a temperature T: For example, if the energy as-

sociated with the value of the variable is calculated as  (here, the 

particle kinetic energy) (u)=(m/2)u2), then this probability is 

given by the Boltzmann factor 
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 

 − 
 B

(u)
P(u) exp

k T
                             (22) 

More precisely, the function f is not directly a probability but a 

probability density:  

 

     x
x

x

dP(u )
f (u )

du
=                    (23) 

     
3

xdP(u )
f (u)

d u
=                    (24) 

 

In order to obtain a dimensionless, normalized probability P, one 

has to multiply f(ux) by a velocity difference ux or f(u ) by a 3D-

volume element 3d u . 

 

As an example of the use of the velocity distribution, one may 

calculate the average x-velocity ux of the particles (mass m) in a 

gas at temperature T. From Equ. (20), one gets 

 

       

2

0
2 2

x
x x x

B B

m mu
u du u exp

k T k T

+

−

 
 =  − = 

 
                 (25) 

 

This follows, because the integrand is an odd function of ux’, 

hence, the negative contributions are canceled by the positive 

ones. Physically, this result means that neither the positive nor 

the negative x direction is preferred, as should be the case for 

truly random motion. On the other hand, the average speed is 

obviously non-zero, |ux| ≥ 0, mathematically because 
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2

2

0

2 2

2
2 2

x
x x x

B B

x
x x

B B

m mu
|u | du |u | exp

k T k T

m mu
du u exp

k T k T





+

−

+

 
 =  − = 

 

 
 =  − = 

 





           (26) 

 

With a variable transformation v = ux’·(m/2kBT), one obtains an 

integral solved in any of the familiar integral tables: 

 

                      2

0

2 2 2B B
x

k T k T
|u | dv v exp v

m m



=   − =            (27)   

 

Similarly, one can calculate the average of u2, and the mean-

square velocity 2u . Because of Equ.(25), this velocity is equal 

to the variance 
2

xu
 in the velocity distribution 

 

               
2

2 2 2 2

0

2 2
x x x

B B
u

k T k T
u u dv v exp v

m m






= − =   − =          (40) 

 

which is equal the average kinetic energy (Equ. (18)31) for motion 

in x direction, divided by m/2. Note that 
2 2

u u . Hence, the 

velocity distribution of Equ. (21) is a Gaussian with a variance 

equal to the quantity kBT/m = 2<x>/m, i.e., the fluctuation in 

the velocity determined by the average in the kinetic en-

ergy, i.e., by the temperature T.  

 

It is also straight-forward to derive the associated Maxwell-

Boltzmann energy distribution, by transforming Equ. (21) to par-

ticle kinetic energy  = (m/2)u2. One notices that the probability 

( )dP u to find particles with velocities between u and u+du in the 
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solid-angle element d is the same as that, dP(), for particles of 

the corresponding energies between  = (m/2)u2 and  + d in 

the same element d . Since d = mu du and u2du=(u/m) d, and 

using the chain rule of differentiation, one has 

 

 

                   (28) 

 

 

From this equation and Equs. (21)-(24), one obtains the differen-

tial 

 

Maxwell-Boltzmann kinetic-energy spectrum 

 

                  
( ) ( )

3 2

3

1
2

2
Bk T

B

dP dP uu
e

d d m d u k T





 

− 
= =   

  
               (29) 

 

Note that this spectrum does not depend on the particle 

species at all! It is the same for particles of any mass. Be-

cause there is no angle dependence of the energy spectrum, the 

angle-integrated spectrum is equal to that of Equ. (28), just scaled 

up by a factor of 4  since 4d  =  is the total solid angle (see 

tutorial), 

 

                     

( ) ( )
3 2

3
4 2 B

/

k T

B

dP dP uu
e

d m d u k T


 

 


− 
= =  

 
         (30) 

 

( ) ( ) ( )2 2

2 2

dP u d P d Pd m

u dud u d d du d d u

 

 
= =

  
 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/Statist_Theory_2007/ILSN07/Spherical_Coordinates.doc


 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

EOS Dil Gases    W. Udo Schröder 

 

10 

 

The figure on 

the left illustrates, 

on a logarithmic 

scale, the shapes 

of Maxwell-

Boltzmann en-

ergy distributions 

for generic parti-

cles in a gas at the 

two very different 

temperatures of T 

= 300K and   T = 

1000K calculated 

with a Mathcad 

code. 

 

Plotted in the 

figure are the 

probabilities for 

finding in the gas 

a molecule with an energy of  which is given in temperature equiv-

alent units of 1/kB. Typical absolute energies are of the order 

of 10-19J per particle.  

 

The approximately exponential character of the random (cha-

otic) velocity distribution is clearly visible on the logarithmic scale. 

Except for the square-root () dependence at low energies, the 

distributions have an exponential character reflecting the temper-

ature, 

      




 →

 
= − 

 

1

B

d dP( )
lim n

d d k T
                        (31) 

Figure 1: Maxwell-Boltzmann energy distribution of 

a gas in molecular chaos, for temperature of T=300 
(blue) and T=1000K (red).   

file:///D:/My%20Webs/Stat_Theory/ILSN_2007/MATHCAD/Boltzmann_MonteCarlo.mcd
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This suggests a simple and elegant method to measure the 

temperature of a gas. Clearly, the T = 1000 K spectrum is much 

harder ("shallower") than that for the lower temperature, demon-

strating the important fact that the logarithmic slope of the en-

ergy spectrum is a direct measure of the temperature of the 

gas. However, caution should be exercised in practical cases, 

where the limit of  →   cannot be taken, because the spectra 

contain no significant intensity at high energies. 

 

The single-particle kinetic energies are typically only of the or-

der of 10-19 J. When plotted in units of J-1, the probabilities have 

extremely small magnitudes. Hence, one often quotes kinetic en-

ergies and related variables for moles of particles (N = 6·1023 par-

ticles). For an N-particle system, one has to multiply the expres-

sions (e.g., Equ. (30)) with N, in order to find the number of par-

ticles at a given energy.  

 

The analytical Maxwell-Boltzmann formula (Equ. (30)) de-

rived above suggest a smooth behavior of the associated proba-

bilities.  

However, a finite number of particles can obviously not have 

a smooth behavior, as far as actually observed velocity and en-

ergy distributions are concerned. These will show statistical fluc-

tuations about the general shapes predicted by theory, with fluc-

tuations determined by the number of particles. A way of illustrat-

ing such statistical distribution is by sampling these formulas by 

Monte Carlo methods.  

 

  The results of such a simulation are shown in the figure below 

(Fig.2) representing "snapshots" of the kinetic-energy distribu-

tions for ideal gases of 1000 particles at T=300K (left) and at 

T=500K (right) (BOLTZMANN_MONTECARLO-01.mcd), illustrating 

microstates of the system. Here the kinetic energies of the 

MATHCAD_252/MonteCarlo.mcd
MATHCAD_252/Boltzmann_MonteCarlo.mcd
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particles are given in multiples of the Boltzmann constant kB, i.e., 

as /kB. These ratios have units of K(Kelvin) represent tempera-

tures. The number n simply numbers the gas particles. 

  

From Fig. 2 below, one observes that the particles are more 

concentrated at lower energies, near the bottom of the "scatter 

plot". Towards higher energies, the density of particles decreases 

exponentially, on average it is given by Equ. 30. Nevertheless, 

there are a few particles present in the spectrum with very high 

energies. For the higher temperature (T=500K) shown in the fig-

ure on the right, the distribution of particle energies is broader and 

somewhat less dense, and the density changes less rapidly with 

energy, than at T=300K.  

 

Because of the continuous scattering and re-scattering of the 

particle, the distributions of all variables change dynamically in 

time, they fluctuate about the thermodynamic average. This effect 

is illustrated in an animation (click on link to view) showing the 

time-dependent fluctuations in this energy distribution for T = 

300K. For this temperature, the Fig. 3 illustrates how the two first 

Figure 2: Snapshots of Maxwell-Boltzmann energy distributions for 1000 gas 

particles at T=300K (left) and T= 500K (right). 
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moments of the distribution in energies, average energy (© 

= aver) and the variance ( 2
  = var) of the particle kinetic ener-

gies change with time, proceeding here with snapshot number i. 

Note that the ordinate scale is double-valued, the units are K for 

the average energy and K2 for the variance.  

 

In analogy to the earlier discussion of the average and variance 

(1st and 2nd moment) of the velocity (probability) distribution, the 

average kinetic energy and its spread are defined in terms of the 

distribution function of Equ. (30). 

 

As a concluding remark to this section about molecular chaos, 

it is pointed out that only weak assumptions have been made 

about random direction and distribution of the energy among a 

specific set of observables (here translational particle velocities). 

While it is natural to associate such a situation with a complete 

Figure 3: Average energy/kB and variance/kB
2 of a 

Maxwell-Boltzmann energy distribution for a sample 

of 100 gas particles viewed at 50 different times. 
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thermodynamic equilibrium of all degrees of freedom of a given 

system, this constraint is not necessary. The general conclusions 

of this section are valid also for subsystems that behave chaotically 

(“local equilibrium”) but do not share their energy content with the 

entire system and all of its degrees of freedom. For example, the 

particles in a local hot spot of a large ensemble of particles can 

behave like such a subsystem that, over longer time periods, will 

dissipate their higher energy content over the larger system by a 

diffusion-like transport process.  
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Equation of State of Ideal Gases 

As explained in other sections, the cumulative effect of multi-

ple interactions of the constituents of a medium, for example the 

molecular collisions in a gas, is to spread the available energy 

evenly over all accessible degrees of freedom. Degrees of freedom 

for individual particles include translation motion along x, y, and z 

spatial degrees of freedom and associated velocity components, 

which are all stochastic variables. Such an even distribution of 

the total available energy only implies that the average energy 

carried by each degree of freedom is the same (1/2kBT), not that 

all constituents or instants have the same energy. All stochastic 

variables show statistical (thermal) fluctuations about their 

mean values. They have a  probability distribution. 

 

Mean values or averages of observables of a complex, multi-

dimensional (multi-particle) system are called macroscopic var-

iables (state functions), because these quantities is what can 

be observed in a macroscopic measurement involving matter 

quantities of the order of significant fractions of a mole or more. 

An example is the mean kinetic energy or pressure of an ensemble 

of, perhaps, 1023 particles. The Equation of State (EOS) of a sys-

tem relates its fundamental macroscopic variables to one another. 

The EOS can be deduced from the behavior of such systems upon 

external influences, energy transfer, compression, dilution, etc. 

 

At this point it is useful to make a detour to experiment to 

recall how a minimal set of macroscopic variables can be defined 

for simple systems such as very dilute chaotic gases of struc-

ture less point particles enclosed in containers. Such gases 

are also called “ideal” or interaction-free. They are realized in na-

ture only in approximation but are used as conceptual tools.  

 

Moments.doc
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In general, energy can be transferred to any (generic) sys-

tem/object in a state of relatively low energy, e.g., in its ground 

state, either by mechanical compression, by exposure to flames or 

various types of radiation, by running electrical currents (sparks) 

through it, and by other means. Several macroscopically observa-

ble phenomena typically occur in response to such excitation:  

 

1. The object “heats” up, i.e., it acquires an increased “tem-

perature” T.  

2. The system expands and potentially changes state (de-

forms, melts, sublimates, boils).  

3. Eventually, at long times, it reaches a steady state termed 

“thermal equilibrium.” 

4. Several objects in close mechanical (“touching”) contact ac-

quire the same temperature. 

 

Operationally, the concept of a temperature is defined in 

terms of observable and reproducible expansion effects of gases, 

liquids, and solids. The Celsius temperature scale (0oC) is cali-

brated at 0oC and 100oC using the solidification and vaporization 

of liquid water, respectively.  

 

With an expansion coefficient , one observes experimentally 

a temperature dependence of the volume V of a fixed amount of 

substance of the form, 

 

                              0 1V(T ) V( ) T=  +                           (32) 

 

Typical values of expansion coefficients for metals are 

(Cu)=1.6·10-5/0C and (Zn)=2.9·10-5/0C. For liquids, the corre-

sponding coefficients are larger, e.g., (H2O)=4.3·10-4/0C, (pet-

rol)=1.0·10-3/0C, (ether)=1.6·10-3/0C. This behavior suggests 

stronger cohesive (atomic or molecular) forces at work in metals 
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than in liquids. The trend continues with gases: For many dilute 

gases at fixed pressure (p=const.) the expansion coefficient is es-

sentially equal, (dilute gases)=3.66·10-3/0C≈1/2730C. The latter 

observation is the content of the Law by Gay-Lussac. The uni-

versal gas expansion coefficient suggests a more convenient Kel-

vin (absolute) temperature scale (0K =0C+273.15), which has its 

zero at -2730C. Then, Equ. (32) can be rewritten as 

 

                  
0

0 0

0

0
0 1 273

273

V( C )
V(T ) V( C ) T C T

C
  =  +  =  +          (33) 

 

Similarly, if dilute gases are enclosed in a fixed volume V and 

heated, their pressure increases according to, 

 

                               0 1P(T ) P( ) T=  +                          (34) 

 

On the other hand, a very important empirical 

gas law is named Boyle’s Law after the English 

chemist Robert Boyle. He found that, for a given 

amount n (number of moles) of gas, and at fixed 

temperature T, the internal gas pressure p in-

creases when the gas is compressed by the 

action of an external force F, i.e., when the 

gas volume V is decreased, and vice versa (see 

Fig. 4). It requires an external force F against the 

internal gas pressure p, in magnitude equal to the 

product of pressure and area on which the force 

is applied, to affect a compression. The experi-

mental correlation p(V) was well described by a 

hyperbolic function 

 

                         1 orP(V ) V P V const(n,T )  =                  (35) 

 

 

V p 

Gas 

Compression  

F 

Figure 4: Testing 
Boyle's Law with 

gas filled cylinder 
and a movable pis-

ton. 
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If both, p and V are allowed to vary at fixed temperature, one finds 

  

                           0 0 1P(T ) V(T ) P( ) V( ) T =   +                      (36) 

 

or                    =   =   → =  B BP V n R T N k T P k T                 (37) 

 

In Equ. (37), n is the number of gas moles in V, =N/V their 

density, and R = 8.31451 J/(K mole) is the universal Gas 

Constant. The equivalent expression in 

Equ. (37) involving the number of parti-

cles N, has as proportionality coefficient 

the Boltzmann Constant kB.  

Figure 15 shows as ex-

amples of the ideal gas 

EOS the isotherms (T=const.) in a plot of pressure vs. volume, V. 

 

The task is now to understand the structure of this EOS (Equ. 

(37) in terms of the very simple microscopic model of a dilute 

Equation (37)

is the Ideal-Gas 

Equation of State 

(EOS). It describes 

the macroscopic 

equilibrium state of 

a dilute gas volume 

completely in terms 

of the state variables 

(“functions”) pres-

sure, volume, and 

temperature. At the 

absolute zero of the 

Kelvin temperature 

scale, neither pres-

sure nor volume of 

the gas are measure-

able, p=0, V=0.  

Figure 5: Ideal-gas isotherms for various temper-
atures T. 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/Statist_Theory_2007/ILSN07/MATHCAD/pV_Isotherms.MCD
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“ideal” gas of weakly or non-interacting, structure-less particles 

(atoms or molecules). In this approximation, particles move ran-

domly inside a container, explicit particle-particle interactions 

are neglected, but their randomizing effect is implicitly as-

sumed. In addition, elastic collisions of the particles with the 

walls of the container are considered. 

 

Consider first a single gas particle of mass m and initial mo-

mentum ip in a rectangular container with rigid walls, shown on the 

left in cross-sectional view. Let a coordinate system {x,y,z} be 

aligned with the edges of the container. This geometry facilitates 

the following calculation but does not restrict the generality of the 

conclusions. 

The particle under consideration 

will eventually collide with one of the 

container walls, e.g., the one on the 

right, which is assumed to be parallel 

to the y-z plane. The collision with the 

rigid wall is assumed to be elastic, i.e., 

essentially no energy is lost by the 

particle. This would be exactly true 

only, if the mass (M) of the wall were 

infinitely large, such that a collision 

with a gas particle would impart very 

little energy, namely Ewall = q2/(2M) 

 0, for any momentum q transferred to the wall.  

For the present discussion, it suffices to assume that the mass 

M of the wall is very large compared to the mass m of a gas particle 

(M  m). Then, the particle is reflected almost perfectly from the 

wall. That is, its momentum components parallel to the wall, py 

and pz, are not changed in the collision, but the component per-

pendicular to it, px, is reversed in direction, i.e., it changes its sign 

but not its magnitude |px|: 

Figure 6: Momentum reversal in 

wall collisions 

  Molecular Collision 

 with Container Wall 

 x 

 y 
 

p i 

 

pf 

 m 

Wall 

Area 

 A 
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x x

i y f y

z z

p p

p p p p

p p

before after

−   
   

= → =
   
   
   

                     (38) 

   

In every collision, there is conservation of linear momenta, i.e., 

the sum of all momenta remains constant. Then, the wall must 

have received the difference in the momenta of the particle before 

and after the collision. This must always be true, even though the 

mass of the wall is assumed to be very large. This momentum 

transfer to the wall is simply equal to 

 

      

2

0

0

x

i f

p

q p p

 
 

= − =
 
 
 

           (39) 

 

This means that the container wall experiences a “kick” in the x 

direction. This kick can be viewed as a force  Fx, acting on the 

wall during the short time t of the collision. Because of New-

ton’s Law, the relation between momentum transfer and force is 

given by 

 

                           = 2x x xF t q p  =                          (40) 

 

 Fx is the force that the container wall “feels” during the time t, 

from the effect of a single particle colliding with it.  

  

However, presumably there are many particles in the gas con-

tainer, some of which collide with the wall on the right, some col-

lide with one of the other walls. The next question is: How many 
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particles collide with the wall 

during the same (small) time in-

terval t?  

 

The answer is simple and can be 

obtained by counting the number of 

particles in the collision layer 

moving towards the wall: If a parti-

cle has a velocity component in pos-

itive x direction, i.e., ux = px/m > 0, 

the particle moves to the right and will eventually hit the right wall, 

those with ux < 0 will hit the wall on the left. If, by assumption, 

the motion of the gas particles is truly random, 1/2 of the 

particles will have ux < 0, the other 1/2 will have ux >0. If there 

are N particles in the container, then N/2 will eventually collide 

with the wall in question.  

However, only those particles that are close enough to the wall 

will actually hit it during t. Only those that are closer than x 

= |ux| t and have ux > 0 will do so. This implies that all par-

ticles in the collision volume V= A ux t with ux > 0 will 

impinge on the wall. With a particle density of  = N/V, one 

calculates that 

 

  N+ = (1/2) ·V = (1/2) · A· ux· t /V     (41) 

 

particles impinge on the wall within the time interval t, each 

transferring a momentum qx = 2px to the wall. The total momen-

tum transfer during t is then given by 

 

    Fx·t = (N+· Fx)·t =N+· (2px)=  · A·m ux
2· t /V  (42) 

 

   

 x = ux t 

 y 

 x 

 Area 

  A 

 
Figure 7: Collision layer in front  

                     of wall. 
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Therefore, the pressure1 Px on the wall, defined as force Fx per 

area A, can be written as    

 

               Px= P = Fx /A =  m ux
2 /V          (43) 

or 

       
2
xP V N mu =                                        (44) 

 

Realizing that the particles may not all have the same velocity, in 

Equ. (44) the quantity ux
2 has been replaced by its average 

over many collisions, 
2
xu .  

 

A similar calculation can be done for any other wall, taking 

into consideration also the other components, uy and uz, of the gas 

particles. If, as assumed, the motion is truly random, then there 

is no reason, why the average of the velocity ux in x direction, or 

its square, should be any different from those in other directions. 

Therefore, it is justified to take 

 

                  
2 2 2 21 3x y zu u u ( / )u= = =       (45) 

 

where the speed of the particles is defined as 

 

              
2 2 2 2

x y zu u u u u u= = = + +       (46) 

 

Then, Equ. (44) can be transformed into 

 

              
21 3P V N ( / )mu =                  (47) 

 
1 When, like here, there is possible confusion between pressure and momentum, pres-

sure will be indicated by a capital letter P. 
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which is now independent of coordinate system. 

Since the kinetic energy of a gas particle is equal to  =(1/2)mu2 

relation (47) can be rewritten as  

 

                               2 3P V N ( / ) =                              (48) 

 

Equation (48) makes good sense, because it relates a quantity 

like the total energy content [p·V=(force/area)· area·dis-

tance] of the gas to a product of average energy per particle ( ) 

and the number of particles (N) in the gas volume. The volume V 

and  hence the product p·V, must scale with the number of parti-

cles. It is said to be an extensive variable. Because of that fact, 

PV must scale as P·V  N1, and no other power of N must appear 

in this expression (Equ. (48)).  

 

In other words, the average specific kinetic energy   is 

seen to determine the magnitude of the total energy content per 

particle, P·V/N, as is plausible. This average specific energy   

naturally depends only on the heat content of the gas, 

which is determined by the temperature T. What remains to 

be explained is the factor (2/3) in Equ. 61. The present phenome-

nological treatment does not explain this factor, it only provides 

the structure of the EOS. However, comparing Equ. (48) with the 

experimental observation of the ideal-gas law, p·V=N·kB·T, one 

derives an expression for the average kinetic energy of the gas 

particles: 

          
3

2
Bk T =                                (49) 

 

Furthermore, since the motion of the particles along any of the x, 

y, and z “degrees of freedom” is independent, the average total 
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energy is equal to the sum of the average energies associated with 

the individual degrees of freedom,  

                                     
1

2
x y z Bk T  = = =                       (50) 

which is identical to Equ. (18), where this relation had been antic-

ipated. The quantity  

                                            
3

2
Bc k=                                 (51) 

 

is the specific heat capacity of a particle with only translational 

degrees of freedom. As will be shown later, one can extend the 

result of Equ. (51) to all independent degrees of freedom of the 

system considered and formulate an Equipartition Law: 

 

One can turn this result around and obtain an illustration of 

the concepts “temperature” or “heat” energy. The absolute tem-

perature of a system in thermal equilibrium is given by its total 

internal energy divided by the total heat capacity. Heat energy is 

distinguished from other types of energy by the fact that it is 

evenly partitioned (distributed) over all degrees of freedom of the 

system.  

 

A very obvious and useful application of the EOS concerns 

mixtures of different ideal gases in the same given volume V 

and at the same temperature T. Let the amounts (numbers of 

moles) of the A different gases in this volume be n1, n2,...,nA. Ideal 

gases are so dilute that the gas particles do not “feel” the 

presence of the other particles, one speaks of an ideal gas of 

In thermal equilibrium,  each degree of freedom has 

an average energy given by the amount (1/2)kBT. 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

EOS Dil Gases    W. Udo Schröder 

 

25 

“interaction-free” particles. Then each gas obeys the same 

EOS (Equ. 61), such that each individual, partial pressure Pi is 

given by  

      Pi = ni· R· T/V      (52)  

 

Then the total amount of gas is given by n = 
i

 ni, and, according 

to the EOS, one expects for the total pressure P: 

 

                      i i
i i

T T T
P nR n R nR

V V V

   
= = =   

  
                (53) 

or     

            i
i

P P=            (54) 

This is the content of Dalton’s Law of partial pressures, saying 

that the total pressure is simply equal to the sum of the partial 

pressures of the different gas components, independent of the 

other properties of the components of the mixture. 

 

The Equipartition Law implies that all particles have the 

same average kinetic energies, ( i ) , which are dependent 

only on the common temperature T but independent of their 

masses mi. From this statement, one concludes immediately that 

the velocities must scale with the masses of those particles. Con-

sidering, for simplicity, only two different particle types and only 

the x degree of freedom and the associated velocities ux(i), Equ. 

25 can be used to calculate this scaling: 

 

  
2 21 21

1 1 2 2
2 2 2

x x B x x

m m
( ) u ( ) k T ( ) u ( ) = = = =      (55) 

 

Therefore, one derives 
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2 2

1 22 1x xu ( ) u ( ) m m=    (56) 

 

Obviously, the same arguments can be made for the other degrees 

of freedom y and z, saying that the mean-square velocities 2u (i)  

scale inversely proportionally with the masses mi of the particles, 

i.e., 
2 1

iu (i) m− . As will be shown later on, the mean velocities 

u(i ) differ only very little from the root-mean-square velocities 

2

rms
u u (i)= . Hence,  

     
1 2/

iu(i) m−    (57) 

 

In thermal equilibrium, heavier particles move more slowly 

than lighter ones. 

 

This latter principle has important applications for the decom-

position of mixtures, e.g., the industrial separation of different 

gas types, of different nuclear isotopes of a gas, or the dif-

ferential permeability of membranes in biological processes. 

Here, one uses the scaling of the velocities with the inverse mass 

to deplete a gas mixture of the more mobile, lighter particles.  

 

The effusion enrichment method uses gas containers with small 

holes or pores through which particles can escape (effuse) for fur-

ther processing. The principle is illustrated in the sketch (Fig. 8) 

showing a container with two gas particle types i =1,2. The deri-

vation of the rates of effusion of the particles through the hole in 

the container is simple, following Equ. (57) with the average x ve-

locities of the particles given by xu (i) : The number of particles 

N+(i) escaping through the hole of area A per unit time t is given 

by 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

EOS Dil Gases    W. Udo Schröder 

 

27 

            N+(i) = (1/2) i· V = (1/2) N(i)·A· xu (i)t/V       (58) 

 

where i = N(i)/V is the partial 

(particle) density of component 

i. This is different from the partial 

mass density defined as  

 

     m(i) = mi· i            (59) 

 

The effusion rates are then seen 

to be proportional to the partial 

densities and to the inverse of the 

square-root of the particle 

masses:                          

                        ( )
( )

( ) i
eff i x

i

N i
R i u i

t m


+

=   


   (60) 

 

 

 

 

  

 
Figure 8: Calculation of the effusion  

                    rate using the concept of a  

                    collision layer. 
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Finite size and interaction effects: Real Gases 

 

In the above discussion of dilute gases, it was assumed that 

the finite size, e.g., the radius R of the gas particles could be ne-

glected compared to their mean free path length, which is a meas-

ure of the strength and range of interactions that actually take 

place between particles. It is simply assumed that particles never 

come close enough to experience these interactions. This implies 

that one deals essentially with (unrealistic) point particles.  

However, already at normal densities and temperatures, the 

validity of this assumption is not guaranteed for all gases. It has 

already been pointed out that at room temperatures and above, 

interactions between gas particles are essentially governed by the 

repulsive core of the Lennard-Jones particle interaction potential. 

This hard core is impenetrable and is simulated approximately by 

the hard-sphere (hs) contact interactions of macroscopic billiard 

balls. Ensembles of such hard spheres should behave approxi-

mately like chaotic gases because of the randomness of hs scat-

tering. It turns out that the finite volume of the gas particles does 

not change this behavior of random scattering. 

To assess the possible effect on experimental observables, as-

sume spherical gas particles of radius R 

and individual volume ( ) 34 3 R =  in a 

container of volume V. As seen from Fig. 

9, the volume V that is not available for 

a particle in proximity to another has 

twice the radius of the particle and is 23 

times the specific volume,  = 8V . 

Therefore, to account for this inaccessible 

volume, the EOS should refer to an ef-

fective volume Veff, which is smaller than the nominal container 

volume V by an amount corresponding to the finite-size effect for 

all N gas particles: 

R 

Excluded Volume 
2R 

Figure 9: Volume excluded in 
hard-sphere interactions. 
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               ( )  → = −   =  −   8 1 8effV V V N V V              (61) 

 

Alternatively, one can say that the effective density eff is larger 

than that calculated from the number of particles (N) in a container 

of nominal volume V. The effective gas density is then  

   

                

( )

( ) ( )





 

   

= =
−  

= = 
−   −  

1

1 8

1

1 8 1 8

eff

eff

eff

N N

V V N

N

V

             (62) 

 

The effect is somewhat (50%) smaller at distances of one mono-

layer from the container walls, since here the gas particles have 

collision partners only on one side. In any case, because of the 

excluded “eigen” volume of the particles in a chaotic gas, the pres-

sure is no longer proportional to the density , unlike in Equ. (37)

, the “ideal gas” EOS. 

 

The attractive part of the Lennard-Jones interaction has an 

effect only at relatively low particle energies. Here, the L-J attrac-

tion retards the motion of the particles, since for a given amount 

of total energy per particle supplied from the outside (1/2kBT per 

d.o.f), the kinetic energy is smaller by the amount of (binding) 

potential energy the particles need to overcome. Hence, the ac-

tual pressure of a real gas at a given temperature T is 

smaller than for an interaction free, ideal gas. The corre-

sponding ideal gas pressure has to be augmented by a differential 

pressure P, which should depend on the probability that two par-

ticles meet within the gas: 
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2
2

2

N
P P a

V
  →   −                        (63) 

Here, the proportionality factor has been chosen as a > 0 for con-

venience. As a result, the actual pressure Pmeas measured for an 

actual gas will be lower than that for a very dilute, ideal gas. If 

these are the only effects by which real gases differ from ideal 

gases, one expects an EOS for real gases at normal densities of 

the approximate structure 

  

                  ( ) ( )1 8IG eff meas BP V P P V Nk T = +  − =          (64) 

 

instead of Equ. 50. This is the so-called van der Waals EOS for 

real gases. It is written in shorter form as, 

                           
( )

  
 +  − =    

2

B

N
P a V Nb Nk T

V
                   (78)

 
 

     
 

where the meaning of 

the parameters b and a 

are clear from the 

above discussion.  

As shown in Fig. 10, 

for temperatures 

higher than critical 

temperature (Tcrit), the 

vdW isotherms P(V)T 

are monotonic with 

volume and look very 

similar to the ideal-gas 

isotherms of Equ. (37) 

The gas resist com-

pression by increasing 

its internal pressure 

Figure 10: Van der Waals EOS for n=2 moles C6H6 for 
T=300, 400, 500, 600, 650, 700K. The dash-dotted 

curve connecting the solid dots is the spinodal curve. 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

EOS Dil Gases    W. Udo Schröder 

 

31 

against the container walls. The higher the temperature, the shal-

lower the curves are, higher the pressure at a given volume. But 

the behavior of the isotherms changes for temperatures lower than 

the critical temperature Tcrit (=304.2K for CO2). Here, the iso-

therms become non-monotonic, exhibiting two extrema, a maxi-

mum pressure at relatively large volume, and a minimum at 

smaller volumes. A spinodal curve is included in Fig. 10, marking 

the points P(V)sp.  

Figure 11 illustrates how 

differently hypothetical 

vdW and similar model 

gases (here N2) are ex-

pected to behave as 

compared to ideal 

gases. Here the iso-

thermal compressi-

bility factor   

    

( )
p V

Z p
nRT


=   (65) 

 

is plotted vs. pressure P 

and different tempera-

tures. Obviously, for an 

ideal gas, Z=1 for all pressures. vdW and other gases modeled on 

real gases like N2, start out with Z=1 at p=0. For larger pressures, 

they first exhibit smaller compressibility factors (Z<1), because 

they experience inter-particle interaction reducing the kinetic par-

ticle energy. At even higher pressures, the repulsive interaction 

has the opposite effect: Model (and real) gases resist compression 

more strongly than ideal gases. Mathematically, one can describe 

the behavior of the compressibility factor in terms of a power se-

ries in density or volume (“virial” expansion).  

Figure 11: Hougen-Watson compressibility factor  

                   F(p) for N2. 

ideal 

gas 
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Below the critical tem-

perature, the pressure-

density characteristics of 

a vdW gas at constant T 

implies a tendency for the 

gas to reduce resistance 

to external pressure. This 

effect leads to increased 

density and a more im-

portant attractive particle 

interactions. 

 

Obviously, such a sys-

tem is not stable. The gas 

“wants to” condense on 

its own, in the P-V region 

outlined by the “spinodal” curve in Figs. 10 and 12. As the volume 

of a gas sample at T is reduced, for example, by means of a con-

stant external force (pressure pext) acting on a movable piston, it 

will partially undergo a transition to a denser phase, i.e., it will 

condense or liquefy. For a given T-const., a continuous isothermal 

process of liquefaction can start at a standard large volume, where 

the binodal intersects the isotherm. It ends at the smallest volume 

required to store the amount of matter in its liquified state. The 

latter volume defines the intersection of the binodal with the given 

isotherm. Of course, the process heat evolved will have to be taken 

up by a “heat bath” in thermal contact with the gas. Phase transi-

tions will form subject of a later section. 

 

For practical applications, the vdW EOS and similar models have 

been fitted to sets of sensitive experimental data for real gases, 

such as measured critical temperature and pressures, or points on 

binodal and spinodal curves. Calculations using the vdW EOS may 

Figure 12: Van der Waals isotherms for CO2 with 

spinodal (dotted) and binodal (dashed) curves. 
The dot marks the critical isotherm at critical pres-

sure and volume. Hatched areas A and B=A illus-
trate the “Maxwell construction” to identify re-

gions of phase coexistence in the p-V diagram. 

Tcrit 
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provide reasonable estimates of the behavior of real gases to be 

expected under given experimental conditions. Now the character-

istic vdW or similar model parameters are known for many real 

gases. Because of the similarity of the underlying theoretical equa-

tion of state, all real gases behave essentially the same, if charac-

terized by the macroscopic quantities p, V, T  scaled with the re-

spective critical values, e.g., T/Tcrit, etc. (Law of Corresponding 

States)  

 

 


